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voltage being a function of  the quenching tempera- 
ture [12].  

The tetragonal distortion in CuFe2 O4 occurs as 
a result of  a heavy concentration o f  distorting 
Cu 2+ cations at the octahedral sites (B-sites), as 
evidenced in Table III. The concentrations of  
Cu 2+ ions at B-sites is affected by temperature; 
becoming less and less for higher and higher tem- 
peratures. When the samples are quenched from 
elavated temperatures the cation distribution is 
frozen4n. When more than 25% of  the Cu 2§ ions 
migrate to A-sites, the tetragonal structure becomes 
cubic. Hence c/a values show temperature 
dependence. 

Samples of  Cu=Znl_=Fe204 (x 4= 1), slow- 
cooled and quenched, exhibit a cubic structure. 
The cation distribution given in Table III shows 
that in all these samples the concentration of  Cu 2+ 
ions at B-sites is less than 75%. Hence, these 
samples do not exhibit tetragonal distortion of  the 
lattice and show a cubic structure. 

The linear increase in a with the addition o f  
Zn 2+ in Cu~Zni_~,F%O4 can be attributed to the 
atomic volume differences wherein the atomic 
sizes do not appear to show any relaxation. 

In Cuo.aZno.zFe204 samples more Cu 2+ ions 
are transferred to A-sites on addition of  Zn and on 
quenching the sample from 800 ~ C compared with 
the transfer of  Cu 2+ ions in the slow-cooled and 

quenched Cuo.6Zno.4Fe2 Q samples. Hence, on 
quenching Cuo.sZno.2F%O 4 samples, the lattice 
parameter shows a larger change than the Cuo.6 
Zno.aF%O4 sample. As there is no significant 

transfer of  Cu 2§ ions to B-sites on quenching the 
remaining samples, the lattice parameter also does 
not show a detectable change. 
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Comments upon a statistical model 
o f  strength 

Recently, a general expression for the failure prob- 
ability of  a brittle material, based upon the pre- 
sumed knowledge of  the flaw-size distribution 
in the material, was formulated by Jayatilaka and 
Trustrum [1]. The resulting strength distribution 
was compared to the standard one given by 
Weibull [2]. Subsequently, Rickerby [3] exten- 
ded this analysis to the case where a bimodal flaw 
distribution is existant in the material. He ob- 
tained the first correction to the Weibull distribu- 
tion in the low strength regime. 

In this note, several comments are made with 
regard to the applicability of these results in the 
low and high strength regimes. 

Jayatilaka and Trustrum [1] obtained the fol- 
lowing expression for the cumulative failure 
probability, Pf, for a system containing N cracks: 

Pf = 1 - [1 - F ( o ) ]  N, ( la)  

where 

"t --x ] ~- Z2-~. v ( lb)  

and 
x = 0 2 7rc  ( l c )  

K~c" 
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In Equations 1 a to c, F (o )  is the cumulative failure 
probability for a single crack up to stress o, KIC 
is the critical stress intensity factor and c and n 
are parameters in the flaw-size distribution. One 
may integrate Equation lb  to obtain, 

F(X) = l+(n--1) ( e - x - 1 ) x  

n-2 
+ e-X X xn-j-2 

, ]=1 

( n  - 1 -])! 

( lb  1) 

Jayatilaka and Trustrum [ 1 ] argued that for large 
N Equation la  may be written as 

P,  ~ 1 - e -NF (2) 

and hence for small x (and large N) they find 
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IX rt-1 X n (F/ - -  1 ) ]  

in (1 - -Pf )  = - - N [  n i  n ! (n + 1)]"  (3) 

The first term on the right-hand side of  Equation 
3 may be considered as the Weibull term and the 
second as the correction. 

Equation 3 is correct to 0(xn), except for the 
case n = 2. This is a result of  the fact that Equa- 
tion 2 derives from the small o (and not large N) 
approximation. In order to obtain a consistent 
expansion in x valid to O(xn), one must expand 
the In term as well as F. 

l n ( 1 - e l )  = N l n ( 1 - - F )  

= N - - F - - - ~ - - - . . . .  (4) 

If  n > 2 then only the first term in the expansion 
shown in Equation 4 need be retained to obtain a 
result valid to 0(x n) since F~x n-1 + o(xn). How- 
ever, for n = 2 the F 2 term contributes to the first 

3.0 
I I Figure l--ln(1--P)/N against x for 

n = 2 .  
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correction to the Weibull term. To illustrate this 
point, [--ln (1 --PO]/N was plotted for n = 2 in 
Fig. 1. It is observed that Equation 3 deviates from 
the exact result by a wide margin, while the cor- 
rect 0(x 2) expression, 

1 N \ 2  24]  (5) 

agrees well with the exact result. Thus, in the 
special case n = 2 the first-order correction to the 
Weibull term given by Jayatilaka and Trustrum 
[1] will be in error. In general, (for n 5 2)correc- 
tions of 0(n -- 1) and higher to the Weibull distri- 
bution must account for all appropriate terms in 
the expansion given in Equation 4 in a consistent 
manner. 

In the case of the bimodal version of this flaw 
distribution (as used by Rickerby [3] ), 

PlCln~-la-n~ e-c ja  
f(a)= 

( n ,  - 2 ) !  

+ P2 C2 nz-I a-n 2 e-cJa 

( n ~  - 2 ) !  ( 6 )  

it is easy to show that 

In (1 - -P , )  =Nln{1- -Pl[F(x ,n~)  

_t (1 --P1)p1 F(~x,n2)]  } , (7) 

where F is the distribution given by Equation lb ~ 
and a = e2/cz. The approximate form which log 
(1 --Pf)  assumes for small x is not only dependent 
upon the small x behaviour ofF ,  but also upon the 
values of the parameters a, na,n2, and P1. For 
example, if n2 >>nl and 1 >>a (and Pa, not too 
small), then for small x, F(ooc, n2) will not con- 
tribute to In (1 --Pg). This case would correspond 
to the situation where the second distribution is 
centred about a very small flaw size and the distri- 
bution decays rapidly with increasing flaw size. 
Rickerby [3] obtained an expression for the first- 
order correction to the Weibull distribution, for 
the case o fa  bimodal flaw distribution, for n2 >n~ 
and small x. However, by performing a careful x 
ordering procedure one may show that this expres- 
sion is valid only under limited circumstances. For 
example, if a = 1, then his expression will be cor- 
rect only if n2 --~nl + 1. For ~ 4  = I, there will be 

a similar restriction upon the relationship between 
nl and n2. Thus, there exist a myriad of cases and 
the correct small x approximation depends upon 
the values of the parameters (a, nl, n2, P1 ) charac- 
terizing the distribution. 

One may experimentally probe the small flaw 
region of a distribution by using small samples and 
thereby avoiding the large flaws in at least a num- 
ber of samples. For sufficiently large x one may 
show (employing Equation lb 1 ) that 

Although it is difficult to unambiguously ascertain 
that one is probing the high-strength regime, re- 
sults on glass fibre strengths seem to indicate that 
this regime has been probed [4]. Here however, 
the strength distribution (at least at the highest 
strengths) often appears to be of the Weibull form 
[4, 5] and unlike the result predicted by Equation 
7. In Fig. 2 this point is illustrated by showing the 
results of some fibre strength measurements made 
in our laboratory. Several features should be 
noted. First, the high-strength regime is most 
likely being probed since some of the reported 
strengths are a reasonable fraction of the theo- 
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refical strength. Next, one notes that at the highest 
strengths Weibull statistics are obeyed quite well, 
with deviations occurring as one proceeds to lower 
strengths. These results are fairly typical for fibres 
and thus seem to suggest that the size distributions 
employed above are probably inappropriate for 
the description of flaws in glass fibres. 
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Reply to "Comments on a statistical 
model  o f strength'" 

An implicit premise of the statistical theory of 
strength [1] is that the flaw density in the material 
is sufficiently high that the probability F of a 
given flaw propagating will be small. Under these 
circumstances Equation 2 of Weinberg [2] should 
closely approximate the failure probability P~ for 
the entire specimen [3]. This is true for low values 
of F (i.e. large N), rather than necessarily for 
small stress, a, as claimed by Weinberg [2]. The 
separate approximation leading to his Equation 3, 
however, does depend on the smallness of the 
parameter x = a2nc/K~c (where c is a parameter 
in the flaw size distribution and Kic is the Mode I 
critical stress intensity factor), and the upper limit 
of its applicability is x = (n + 1)In [4] (where n is 
a parameter in the flaw-size distribution), corre- 
sponding to the maximum in Curve B of Fig. 1 
of Weinberg [2]. 

Weinberg [2] has noted that for the special 
case where n = 2, his Equation 3 is inexact because 
the term in x n is improperly approximated. Simi- 
lar problems would arise for higher values of n 
only if higher order terms were considered. As 
relatively few flaws are required to be present in a 
specimen for the approximate analysis to be valid 
[3], and flaw densities are high in typical brittle 
materials [5, 6], more extensive order analysis will 
not generally be necessary. 

For a bimodal flaw-size distribution the stress 
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dependent correction term affects the relative con- 
tribution to the overall failure probability [4]. 
Provided that the small x restriction is maintained 
the validity of Weinberg's [2] Equation 7 will not 
be limited in the manner suggested. The contri-. 
bution of higher order terms will be negligible 
compared with the first two terms, under small x 
conditions, for both component flaw populations. 
Therefore, whichever population is dominant, the 
major contribution to the failure probability will 
still be well approximated by the first two terms 
in each case. The determination of the relative 
importance of the respective populations is already 
embodied in the existing theory. 

The experimental data presented for glass fibres 
are indicative of a high density of rather small 
flaws leading to the high stress Weibuil type 
behaviour, together with occasional large flaws in 
only some of the specimens causing lower stress 
failures [7]. Results of indentation strength tests 
correlate well with the previously proposed correc- 
ted theory [8], but lie in an intermediate stress 
range between experiments on fibres and large 
flexural or tensile specimens. It is debatable 
whether the statistical theory can truly be con- 
sidered appropriate to failures due to isolated large 
flaws in the fibres, since the existence of a plateau 
between the high and low stress data suggests that 
these more severe flaws fall in a discrete size range 
rather than forming a continuous distribution. 
Nevertheless, the gradually decreasing slope of the 
lower stress data would be expected, on the basis 
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of  Equation 7 of  [2],  for a bimodal distribution 
in which there was little or no overlap between the 
large and small size range flaw populations. 
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X-ray characterization of  SrCeO 3 and 
BaCe03 

The compounds SrCeO3 and BaCeO3 have been 
examined by numerous authors in order to deter- 
mine their crystal structures. Both compounds 
exhibit non-ideal perovskite-type crystal structures; 
with regard to their symmetry, however, a great 
deal of  the data reported in the literature are 
often in disagreement. 

SrCeO3 has been assigned, with varying lattice 
parameters, a cubic cell [1, 2], a tetragonal cell 
[2, 3], an orthorhombic cell [ 4 - 7 ]  and a menu- 
clinic cell [ 8 - 1 0 ] .  According to Preda and 
Dinescu [2], SrCeO3 undergoes a phase transition 
from a high-temperature cubic structure, obtain- 
able by quenching, to a low-temperature tetragonal 
structure, obtainable by slow cooling. 

BaCeO3 has been assigned, with varying lattice 
parameters, a cubic cell [ 1 - 5 ,  11, 12], a tetragonal 
cell [2], an orthorhombic cell [6] and a menu- 
clinic cell [9, 10]. For BaCeO3, too, Preda and 
Dinescu [2] have found evidence o f  a phase 
transition from a high-temperature cubic structure, 
obtainable by rapid cooling, to a low-temperature 
tetragonal structure, obtainable by slow cooling. 

Because of  their interesting electrical character- 
istics, which have been pointed out by Lunge et al. 
[13], SrCeO3 and BaCeO3 appear to be suitable 
materials for use as high-temperature semicon- 
ductors; therefore, the present investigation was 
undertaken in order to determine the crystal 
structures of  the two cerates under different 
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operating conditions and to verify the existence 
o f  the phase transition reported by Preda and 
Dinescu [2], 

The raw materials used were CeO2 (99.9% 
pure) and reagent grade SrCO3 and BaCO3. To 
prepare the stoichiometric compounds in the mole 
ratio of  1 : 1, the starting materials were weighed, 
mixed and homogenized by hand-mixing in agate 
mortars for 4h ,  pressed into discs and air-fired 
at 1400~ for long time periods to ensure the 
completion of  the reactions; equilibrium was 
considered to have been attained when the X-ray 
diffraction patterns o f  specimens subjected to 
successive heating and cooling treatments showed 
no further change. 

The specimens were subjected to different 
cooling treatments: namely, some of  them were 
quenched in water at 20 ~ C, some were cooled in 
air, some were allowed to cool in the oven, and 
some were annealed at a temperature of  450 ~ C for 

T A B L E I Crystal data of S I C e O  a 

Parameter Value 

a 5.997 -+ 0.002 A 
b 12.308 -+ 0.004A 
c 8.615 -+ 0.003 A 
v 635.88 A 3 
FW 275.74 
Z 8 
6talc 5.76 gcm -3 
6ex u 5.68 g cm -a 

V = volume, FW = formula weight, Z = number of 
formula weights per unit cell, 6calc = calculated density 
and 6 exp = experimental density. 
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